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Outline

• Internet of Vehicles
• Vehicle Control Systems and Recent Progresses
• Model-Data Inspired VDC
• Towards Dependable Model-Data Inspired IO-EV
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Internet of Vehicles Ecosystem
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Vehicles slowly are integrated into 
the IoT system to bring services in:

• Traffic-flow management
• Road-intersection management
• Vehicle customization
• Third party applications
• No safety-critical applications
• No application for high-fidelity 

virtual vehicle testing and 
validation
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Holistic Vehicle Control System and Automated Driving

Internet of Vehicles
Vehicle to Vehicle Vehicle to Infrastructure HD Maps

Road conditions Traffic information …

Firewall

Perception layer for ADAS and automated vehicles
Cameras Short range radars LIDARS

GNSS Long range radars ….

Vehicle Control System
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Control Systems
• Traction control
• Torque vectoring
• Active steering
• Differential braking
• Throttle control
• Active aerodynamics
• …

Vehicle Stock Systems
• IMU
• Wheel speed
• Brake pressure
• Motor torque
• Steering wheel angle
• Suspension height 
• …



Progresses in VDC* Systems

• Universal VDC Systems

• Agent-Based VDC Systems

• Model-Data Inspired VDC Systems

• Dependable IoV for VDC Systems
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* In this talk, VDC includes both control and estimation systems.



Holistic vs. Subsystem-based VDC Systems
Control Systems

• Traction control
• Torque vectoring
• Active steering
• Differential braking
• Throttle control

Control Systems
• Power management 
• Suspension control
• Transmission control
• eLSD control
• Active aerodynamics

General Features of Subsystem-based VDCs  
• Error-based control
• Non-optimal solution 
• Event-based design to have a peaceful 

coexistence of different controllers
• Long development time and expensive
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Universal Holistic Vehicle Control Structure

Model-based 
Universal Fault-tolerant 

Holistic Vehicle Control (HVC)

+

Reliable Vehicle 
State/parameter 

Estimation

Sensor Fault 
Detection and 
Reconstruction 

Actuator Fault Detection
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Universal Holistic VDC Systems
• One VDC system for any car with any control actuation topology 

Any powertrain type

Performance Vehicles SUVs

Pick up Trucks

AWD FWD RWD

Drivelines

Family Cars
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Universal Holistic VDC Systems (cont.)
Any control actuation topology

Torque vectoring HybridDifferential Braking

Actuators: Traction/Brake Torque Actuators: Active Steering

AFS ARS AAS

• Active Aerodynamics
• Active Roll Control
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Other features of Universal Holistic VDC Systems

• Sensor fault detection and real time reconstruction
• Actuator fault detection and real time control action 

reallocation
• Handle actuator dynamics
• Embedded power management system

Universal Holistic VDC Systems (cont.)

10



Agent-based Holistic Vehicle Control
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Model-based Universal Fault-tolerant HVC

Parameter Value

Steering input

Initial velocity 0 km/h

Accelerator pedal Fully pressed

Road condition Dry

• Vehicle: Electric AWD SUV
• Control actuation: Torque Vectoring
• Test Maneuver: Slalom
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Model-based Universal Fault-tolerant HVC

Parameter Value

Steering input

Initial velocity 35 km/h

Accelerator pedal Pressed in steering

Road condition 𝐖𝐞𝐭, 𝝁 ≈ 𝟎. 𝟒

• Vehicle: Electric RWD SUV
• Control actuation: Rear Torque Vectoring and Differential Braking
• Test Maneuver: Double Lane Change
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Model-based Universal Fault-tolerant HVC
• Vehicle: Production Vehicle – Cadillac CTS-V, RWD Sedan
• Control actuation: Electronic Limited Slip Differential (eLSD) and Differential Braking
• Test Maneuver: Acceleration in Turn in wet surface, 𝝁 ≈ 𝟎. 𝟒
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Model-Data Inspired VDC

Vehicle Traditional Sensors 
• IMU
• Wheel speed
• Brake pressure
• Motor/engine torque
• Steering wheel angle
• ...

Internet of Vehicles
Vehicle to Vehicle Vehicle to Infrastructure High-resolution Map data
Road conditions Traffic information …

Firewall

Perception layer for automated vehicles
Cameras Short range radars LIDARS

GNSS Long range radars ….

HVC System

Model/Agent-based 
Universal Fault-tolerant 

Holistic Vehicle Control (HVC)

+

Reliable Vehicle 
State/parameter 

Estimation

Sensor Fault 
Detection and 
Reconstruction 

Actuator Fault Detection

• Model-based VDC systems 
enhance greatly vehicle 
safety

• Data can be used to 
reduce model and road 
uncertainties to improve 
further control and 
estimation systems
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Model-Data Inspired VDC

• Learning MPC
• Learning Agent-based MPC
•Real-Time Learning-based MPC Weight Tuning
•Holistic Vehicle Health Monitoring System
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• Use of data to compensate for model errors
• Real-time learning module to learn-as-you-go
• Data management to keep only relevant data
• Authentication method to choose between model and data

Wet Asphalt PatchEquinox EV Waterloo Test track

Learning MPC for HVC - Experiments
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Double Lane Change Results

Learning MPC for HVC - Experiments
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Learning Agent-based MPC: Experiments
Agents: 
• FDT (Front Differential Torque)
• RDT (Rear Differential Torque)
• AFS (Active Front Steering)
• DT (Driver Torque)

Scenario Agent configuration
Driving 

Maneuver
Vehicle Speed Road Friction

Two Black-box 

Agents

• Controllable agent: RDT
• White-box agent: DT
• Black-box agent: FDT & AFS

Sinewaves 40 kph dry asphalt
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Learning Agent-based MPC: Experiments

RDT, FDT and AFS are turned off RDT, FDT and AFS are turned on;
RDT controlled by AMPC

RDT, FDT and AFS are turned on;
RDT controlled by LAMPC
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Real-Time Learning-based MPC Weight Tuning

MPC with tuned 
Weights Vehicle

Measurements

Control Actions MPC weights 
authentication 

Vehicle response

Authenticated Weights

𝑳 = 𝟐

MPC 
Controller Vehicle

Control Actions Error 
Improvement 
Calculations

System 
response More than 

the 
threshold?

𝑳 = 𝟏
Yes

No
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• Double Lane Change maneuvers

• Vehicle average speed 70 kph

• Torque vectoring control action

• Real-time weight selection

Real-Time Learning-based MPC Weight Tuning: Experiments
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Real-Time Learning-based MPC Weight Tuning: Experiments
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• Acceleration-in-turn Maneuvers

Holistic Vehicle Health Monitoring System: Experiments
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Faulty Longitudinal Acceleration Sensor Faulty Wheel Speed Sensor

Faulty Traction Motor

Holistic Vehicle Health Monitoring System: Experiments
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Main Objectives of a Dependable IoT
• Universal Database for IoV
• Type of data and normalization
• Coherency
• Healing
• Resource Allocation
• Real-time Computation Topology

• Model-data inspired solutions for vehicle applications
• Vehicle Control
• Estimation Systems
• Health Monitoring
• Diagnosis and Prognosis
• Power Management 
• Real-time Perception Reliability Analysis
• Path planning/tracking 
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Thank you !


